login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254865
a(n) = Product_{k = 1+n-floor(n/3) .. n} k.
2
1, 1, 3, 4, 5, 30, 42, 56, 504, 720, 990, 11880, 17160, 24024, 360360, 524160, 742560, 13366080, 19535040, 27907200, 586051200, 859541760, 1235591280, 29654190720, 43609104000, 62990928000, 1700755056000, 2506375872000, 3634245014400, 109027350432000, 160945136352000, 234102016512000, 7725366544896000, 11420107066368000
OFFSET
1,3
COMMENTS
Informally: Take the upper third of natural numbers in range [1..n] and multiply them together.
LINKS
FORMULA
a(n) = Product_{k = 1+n-floor(n/3) .. n} k.
Other identities. For all n >= 1:
a(3n) = A064352(n).
From Robert Israel, Jul 15 2020: (Start) a(n) = n!/(n-floor(n/3))!.
a(3*k) = 3*k*a(3*k-1).
a(3*k+1) = (3*k+1)*a(3*k)/(2*k+1).
a(3*k+2) = (3*k+2)*a(3*k+1)/(2*k+2).
E.g.f.: (cosh(x^(3/2))-1)*(1+1/x) + sinh(x^(3/2))/sqrt(x).
(End)
MAPLE
seq(n!/(n-floor(n/3))!, n=1..50); # Robert Israel, Jul 15 2020
MATHEMATICA
Array[#!/(# - Floor[#/3])! &, 34] (* Michael De Vlieger, Jul 15 2020 *)
PROG
(Scheme)
(define (A254865 n) (mul A000027 (+ 1 (- n (floor->exact (/ n 3)))) n))
(define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
(define (A254865 n) (A254864bi n 1)) ;; Alternatively, using code given in A254864.
(PARI) a(n) = prod(k=1+n-n\3, n, k); \\ Michel Marcus, Jul 15 2020
CROSSREFS
Leftmost column of A254864.
Trisection: A064352.
Sequence in context: A370625 A085285 A282250 * A085841 A163483 A327876
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 09 2015
STATUS
approved