login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254864
Triangular table T(n,k) = n! / (n-floor(n/3^k))!, read by rows T(1,1), T(2,1), T(2,2), T(3,1), T(3,2), T(3,3), ...
4
1, 1, 1, 3, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 1, 30, 1, 1, 1, 1, 1, 42, 1, 1, 1, 1, 1, 1, 56, 1, 1, 1, 1, 1, 1, 1, 504, 9, 1, 1, 1, 1, 1, 1, 1, 720, 10, 1, 1, 1, 1, 1, 1, 1, 1, 990, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11880, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17160, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24024, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
An auxiliary array for computing A088487.
FORMULA
T(n,k) = n! / (n-floor(n/3^k))! = A000142(n) / A000142(n-floor(n/A000244(k))).
T(n,k) = Product_{m=1+(n-floor(n/(3^k))) .. n} m.
EXAMPLE
The first 27 rows of a triangular table:
1
1, 1
3, 1, 1
4, 1, 1, 1
5, 1, 1, 1, 1
30, 1, 1, 1, 1, 1
42, 1, 1, 1, 1, 1, 1
56, 1, 1, 1, 1, 1, 1, 1
504, 9, 1, 1, 1, 1, 1, 1, 1
720, 10, 1, 1, 1, 1, 1, 1, 1, 1
990, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1
11880, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
17160, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
24024, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
360360, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
524160, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
742560, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
13366080, 306, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
19535040, 342, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
27907200, 380, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
586051200, 420, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
859541760, 462, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1235591280, 506, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
29654190720, 552, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
43609104000, 600, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
62990928000, 650, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1700755056000, 17550, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
...
(the last ones truncated a bit).
PROG
(PARI) A254864bi(n, k) = prod(i=(1+(n-(n\(3^k)))), n, i);
(Scheme)
(define (A254864 n) (A254864bi (A002024 n) (A002260 n)))
;; The above function can then use either one of these:
(define (A254864bi n k) (/ (A000142 n) (A000142 (- n (floor->exact (/ n (expt 3 k)))))))
(define (A254864bi n k) (mul A000027 (+ 1 (- n (floor->exact (/ n (expt 3 k))))) n))
(define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
CROSSREFS
The leftmost column: A254865.
Sequence in context: A177058 A176921 A000503 * A111956 A024564 A084795
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Feb 09 2015
STATUS
approved