The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254734 a(n) is the least k > n such that n divides k^4. 4
 2, 4, 6, 6, 10, 12, 14, 10, 12, 20, 22, 18, 26, 28, 30, 18, 34, 24, 38, 30, 42, 44, 46, 30, 30, 52, 30, 42, 58, 60, 62, 36, 66, 68, 70, 42, 74, 76, 78, 50, 82, 84, 86, 66, 60, 92, 94, 54, 56, 60, 102, 78, 106, 60, 110, 70, 114, 116, 118, 90, 122, 124, 84 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A073353(n) <= a(n) <= 2*n. Any prime that divides n must also divide a(n), and because n divides (2*n)^4. a(n) = 2*n iff n is squarefree (A005117). - Robert Israel, Feb 08 2015 LINKS Peter Kagey, Table of n, a(n) for n = 1..5000 EXAMPLE a(16) = 18 because 16 divides 18^4, but 16 does not divide 17^4. MAPLE f:= proc(n) local k;      for k from n+1 do if (k^4/n)::integer then return k fi od: end proc: seq(f(n), n=1..100); # Robert Israel, Feb 08 2015 MATHEMATICA lk[n_]:=Module[{k=n+1}, While[PowerMod[k, 4, n]!=0, k++]; k]; Array[lk, 70] (* Harvey P. Dale, Nov 22 2015 *) PROG (Ruby) def a(n)   (n+1..2*n).find { |k| k**4 % n == 0 } end (PARI) a(n)=for(k=n+1, 2*n, if(k^4%n==0, return(k))) vector(100, n, a(n)) \\ Derek Orr Feb 07 2015 (Python) def A254734(n): ....k = n + 1 ....while pow(k, 4, n): ........k += 1 ....return k # Chai Wah Wu, Feb 15 2015 CROSSREFS Cf. A005117 (squarefree). Cf. A073353 (similar, with k^n). Cf. A254732 (similar, with k^2), A254733 (similar, with k^3). Sequence in context: A037225 A060685 A073353 * A254733 A254732 A299541 Adjacent sequences:  A254731 A254732 A254733 * A254735 A254736 A254737 KEYWORD nonn AUTHOR Peter Kagey, Feb 07 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 05:07 EDT 2022. Contains 353887 sequences. (Running on oeis4.)