login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254678
Primes p with the property that there are four consecutive integers less than p whose product is 1 mod p.
2
7, 17, 23, 31, 41, 47, 73, 89, 97, 103, 127, 137, 151, 167, 199, 223, 233, 239, 241, 257, 271, 281, 311, 313, 353, 359, 367, 383, 409, 431, 433, 439, 449, 479, 487, 503, 521, 577, 593, 601, 607, 647, 673, 719, 727, 743, 751, 761, 769, 839, 857, 881, 887, 911, 929, 937, 953, 967, 977, 983
OFFSET
1,1
LINKS
FORMULA
x*(x+1)*(x+2)*(x+3) == 1 mod p, p is prime, 1 <= x <= p-4.
EXAMPLE
p=7: 2*3*4*5=120 == 1 mod 7;
p=17: 2*3*4*5=120 == 1 mod 17 AND 12*13*14*15=32760 == 1 mod 17; for p=13: no triple == 1 mod 13;
p=23: 5*6*7*8 == 1 mod 23 AND 15*16*17*18== 1 mod 23 AND 19*20*21*22 == 1 mod 23; and so on. For the number of quadruples for a prime, see A256580.
MATHEMATICA
fsiQ[n_]:=AnyTrue[Times@@@Partition[Range[n-1], 4, 1], Mod[#, n]==1&]; Select[ Prime[Range[200]], fsiQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 02 2019 *)
PROG
(R)
library(numbers)
IP <- vector()
t <- vector()
S <- vector()
IP <- c(Primes(1000))
for (j in 1:(length(IP))){
for (i in 2:(IP[j]-4)){
t[i-1] <- as.vector(mod((i*(i+1)*(i+2)*(i+3)), IP[j]))
Z[j] <- sum(which(t==1))
S[j] <- length(which(t==1))
}
}
IP[S!=0]
#Carefully increase Primes(1000). It takes several hours for 100000.
(PARI) lista(nn) = forprime(p=2, nn, if (sum(x=1, p-4, ((x*(x+1)*(x+2)*(x+3)) % p) == 1) > 0, print1(p, ", "))); \\ Michel Marcus, Apr 03 2015
CROSSREFS
Sequence in context: A270951 A001132 A308816 * A165353 A048976 A088546
KEYWORD
nonn
AUTHOR
Marian Kraus, Apr 02 2015
STATUS
approved