login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p with the property that there are four consecutive integers less than p whose product is 1 mod p.
2

%I #43 Jul 02 2019 17:11:58

%S 7,17,23,31,41,47,73,89,97,103,127,137,151,167,199,223,233,239,241,

%T 257,271,281,311,313,353,359,367,383,409,431,433,439,449,479,487,503,

%U 521,577,593,601,607,647,673,719,727,743,751,761,769,839,857,881,887,911,929,937,953,967,977,983

%N Primes p with the property that there are four consecutive integers less than p whose product is 1 mod p.

%H Harvey P. Dale, <a href="/A254678/b254678.txt">Table of n, a(n) for n = 1..1000</a>

%F x*(x+1)*(x+2)*(x+3) == 1 mod p, p is prime, 1 <= x <= p-4.

%e p=7: 2*3*4*5=120 == 1 mod 7;

%e p=17: 2*3*4*5=120 == 1 mod 17 AND 12*13*14*15=32760 == 1 mod 17; for p=13: no triple == 1 mod 13;

%e p=23: 5*6*7*8 == 1 mod 23 AND 15*16*17*18== 1 mod 23 AND 19*20*21*22 == 1 mod 23; and so on. For the number of quadruples for a prime, see A256580.

%t fsiQ[n_]:=AnyTrue[Times@@@Partition[Range[n-1],4,1],Mod[#,n]==1&]; Select[ Prime[Range[200]],fsiQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 02 2019 *)

%o (R)

%o library(numbers)

%o IP <- vector()

%o t <- vector()

%o S <- vector()

%o IP <- c(Primes(1000))

%o for (j in 1:(length(IP))){

%o for (i in 2:(IP[j]-4)){

%o t[i-1] <- as.vector(mod((i*(i+1)*(i+2)*(i+3)),IP[j]))

%o Z[j] <- sum(which(t==1))

%o S[j] <- length(which(t==1))

%o }

%o }

%o IP[S!=0]

%o #Carefully increase Primes(1000). It takes several hours for 100000.

%o (PARI) lista(nn) = forprime(p=2, nn, if (sum(x=1, p-4, ((x*(x+1)*(x+2)*(x+3)) % p) == 1) > 0, print1(p, ", "))); \\ _Michel Marcus_, Apr 03 2015

%Y Cf. A256567, A256580.

%K nonn

%O 1,1

%A _Marian Kraus_, Apr 02 2015