login
A254677
Least positive integer m with A160325(m) = n.
2
2, 1, 5, 19, 15, 22, 37, 92, 71, 156, 136, 222, 206, 211, 257, 292, 506, 402, 577, 521, 632, 789, 682, 796, 742, 1006, 1046, 1192, 1346, 1482, 1312, 1507, 2021, 1522, 2172, 1977, 1962, 2007, 2161, 2479, 2502, 3047, 2761, 2326, 3097, 2876, 3316, 3216, 3421, 3386, 3902, 3652, 4406, 4356, 4587, 4492, 4342, 4917, 4811, 5472
OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0. Moreover, no term a(n) is congruent to 3 modulo 5.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
EXAMPLE
a(3) = 5 since 5 is the least positive integer that can be written as x(x+1)/2 + (2y)^2 + z(3z-1)/2 (with x,y,z nonnegative integers) in exactly 3 ways. In fact, 5 = 0*1/2 + 0^2 + 2*(3*2-1)/2 = 0*1/2 + 2^2 + 1*(3*1-1)/2 = 1*2/2 + 2^2 + 0*(3*0-1)/2.
MATHEMATICA
TQ[n_]:=IntegerQ[Sqrt[8n+1]]
Do[Do[m=0; Label[aa]; m=m+1; r=0; Do[If[TQ[m-4y^2-z(3z-1)/2], r=r+1; If[r>n, Goto[aa]]], {y, 0, Sqrt[m/4]}, {z, 0, (Sqrt[24(m-4y^2)+1]+1)/6}];
If[r==n, Print[n, " ", m]; Goto[bb], Goto[aa]]]; Label[bb]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 05 2015
STATUS
approved