OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0. Moreover, no term a(n) is congruent to 3 modulo 5.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..200
Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
EXAMPLE
a(3) = 5 since 5 is the least positive integer that can be written as x(x+1)/2 + (2y)^2 + z(3z-1)/2 (with x,y,z nonnegative integers) in exactly 3 ways. In fact, 5 = 0*1/2 + 0^2 + 2*(3*2-1)/2 = 0*1/2 + 2^2 + 1*(3*1-1)/2 = 1*2/2 + 2^2 + 0*(3*0-1)/2.
MATHEMATICA
TQ[n_]:=IntegerQ[Sqrt[8n+1]]
Do[Do[m=0; Label[aa]; m=m+1; r=0; Do[If[TQ[m-4y^2-z(3z-1)/2], r=r+1; If[r>n, Goto[aa]]], {y, 0, Sqrt[m/4]}, {z, 0, (Sqrt[24(m-4y^2)+1]+1)/6}];
If[r==n, Print[n, " ", m]; Goto[bb], Goto[aa]]]; Label[bb]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 05 2015
STATUS
approved