OFFSET
0,2
COMMENTS
In April 2009, Zhi-Wei Sun conjectured that a(n)>0 for every n=0,1,2,3,... Note that pentagonal numbers are more sparse than squares. It is known that any positive integer can be written as the sum of a triangular number, a square and an even square (or an odd square).
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 0..60000
B. K. Oh and Z. W. Sun, Mixed sums of squares and triangular numbers (III), J. Number Theory 129(2009), 964-969.
Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Zhi-Wei Sun, Various new conjectures involving polygonal numbers and primes (a message to Number Theory List), 2009.
Zhi-Wei Sun, Mixed Sums of Primes and Other Terms (a webpage).
Z. W. Sun, On universal sums of polygonal numbers, preprint, arXiv:0905.0635 [math.NT], 2009-2015.
FORMULA
a(n) = |{<x,y,z>: x,y,z=0,1,2,... & x(x+1)/2+4y^2+(3z^2-z)/2}|.
EXAMPLE
For n=15 the a(15)=5 solutions are 3+0+12, 6+4+5, 10+0+5, 10+4+1, 15+0+0.
MATHEMATICA
SQ[x_]:=x>-1&&IntegerPart[Sqrt[x]]^2==x RN[n_]:=Sum[If[SQ[8(n-4y^2-(3z^2-z)/2)+1], 1, 0], {y, 0, Sqrt[n/4]}, {z, 0, Sqrt[n-4y^2]}] Do[Print[n, " ", RN[n]], {n, 0, 60000}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 08 2009
EXTENSIONS
More terms copied from author's b-file by Hagen von Eitzen, Jul 20 2009
STATUS
approved