login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254287 Expansion of (1-(1-3125*x)^(1/5)) / (625*x). 4
1, 1250, 2343750, 5126953125, 12176513671875, 30441284179687500, 78821182250976562500, 209368765354156494140625, 567040406167507171630859375, 1559361116960644721984863281250, 4341403109719976782798767089843750, 12210196246087434701621532440185546875 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, if k > 1 and g.f. = (1 - (1 - k^k * x)^(1/k)) / (k^(k-1) * x), then a(n) ~ k^(k*n) / (GAMMA((k-1)/k) * n^((k+1)/k)).

LINKS

Table of n, a(n) for n=0..11.

FORMULA

G.f.: (1-(1-3125*x)^(1/5)) / (625*x).

a(n) ~ 3125^n / (GAMMA(4/5) * n^(6/5)).

Recurrence: (n+1)*a(n) = 625*(5*n-1)*a(n-1).

a(n) = 5^(5*n) * GAMMA(n+4/5) / (GAMMA(4/5) * GAMMA(n+2)).

E.g.f.: hypergeom([4/5], [2], 3125*x). - Vaclav Kotesovec, Jan 28 2015

From Peter Bala, Sep 01 2017: (Start)

a(n) = (-1)^n*binomial(1/5, n+1)*5^(5*n+1). Cf. A000108(n) = (-1)^n*binomial(1/2, n+1)*2^(2*n+1).

a(n) = 125^n*A025748(n+1). (End)

MAPLE

a:=series((1-(1-3125*x)^(1/5))/(625*x), x=0, 12): seq(coeff(a, x, n), n=0..11); # Paolo P. Lava, Mar 27 2019

MATHEMATICA

CoefficientList[Series[(1-(1-3125*x)^(1/5)) / (625*x), {x, 0, 20}], x]

CoefficientList[Series[Hypergeometric1F1[4/5, 2, 3125*x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2015 *)

CROSSREFS

Cf. A000108 (k=2), A254282 (k=3), A254286 (k=4).

Cf. A008546, A025748.

Sequence in context: A106322 A035762 A107558 * A252958 A288354 A186477

Adjacent sequences:  A254284 A254285 A254286 * A254288 A254289 A254290

KEYWORD

nonn,easy

AUTHOR

Vaclav Kotesovec, Jan 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 02:46 EST 2021. Contains 349426 sequences. (Running on oeis4.)