The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254287 Expansion of (1 - (1 - 3125*x)^(1/5)) / (625*x). 5
 1, 1250, 2343750, 5126953125, 12176513671875, 30441284179687500, 78821182250976562500, 209368765354156494140625, 567040406167507171630859375, 1559361116960644721984863281250, 4341403109719976782798767089843750, 12210196246087434701621532440185546875 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, if k > 1 and g.f. = (1 - (1 - k^k * x)^(1/k)) / (k^(k-1) * x), then a(n) ~ k^(k*n) / (Gamma((k-1)/k) * n^((k+1)/k)). LINKS G. C. Greubel, Table of n, a(n) for n = 0..250 FORMULA G.f.: (1 - (1 - 3125*x)^(1/5)) / (625*x). a(n) ~ 3125^n / (Gamma(4/5) * n^(6/5)). Recurrence: (n+1)*a(n) = 625*(5*n-1)*a(n-1). a(n) = 5^(5*n) * Gamma(n+4/5) / (Gamma(4/5) * Gamma(n+2)). E.g.f.: hypergeom([4/5], [2], 3125*x). - Vaclav Kotesovec, Jan 28 2015 From Peter Bala, Sep 01 2017: (Start) a(n) = (-1)^n*binomial(1/5, n+1)*5^(5*n+1). Cf. A000108(n) = (-1)^n*binomial(1/2, n+1)*2^(2*n+1). a(n) = 125^n*A025748(n+1). (End) MATHEMATICA CoefficientList[Series[(1-(1-3125*x)^(1/5)) / (625*x), {x, 0, 20}], x] CoefficientList[Series[Hypergeometric1F1[4/5, 2, 3125*x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2015 *) PROG (Magma) [Round(5^(5*n)*Gamma(n+4/5)/(Gamma(4/5)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022 (SageMath) [5^(5*n)*rising_factorial(4/5, n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022 CROSSREFS Cf. A000108 (k=2), A254282 (k=3), A254286 (k=4). Cf. A008546, A025748. Sequence in context: A106322 A035762 A107558 * A252958 A288354 A186477 Adjacent sequences: A254284 A254285 A254286 * A254288 A254289 A254290 KEYWORD nonn,easy AUTHOR Vaclav Kotesovec, Jan 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 06:58 EDT 2024. Contains 375008 sequences. (Running on oeis4.)