OFFSET
1,2
COMMENTS
Also positive integers y in the solutions to 4*x^2 - 3*y^2 - 2*x + 3*y - 2 = 0, the corresponding values of x being A254283.
LINKS
Colin Barker, Table of n, a(n) for n = 1..875
Index entries for linear recurrences with constant coefficients, signature (1,194,-194,-1,1).
FORMULA
a(n) = a(n-1)+194*a(n-2)-194*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(35*x^3+97*x^2-35*x-1) / ((x-1)*(x^2-14*x+1)*(x^2+14*x+1)).
EXAMPLE
36 is in the sequence because the 36th centered triangular number is 1891, which is also the 31st hexagonal number.
MATHEMATICA
LinearRecurrence[{1, 194, -194, -1, 1}, {1, 36, 133, 6888, 25705}, 20] (* Harvey P. Dale, Nov 11 2020 *)
PROG
(PARI) Vec(x*(35*x^3+97*x^2-35*x-1)/((x-1)*(x^2-14*x+1)*(x^2+14*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 28 2015
STATUS
approved