login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254286 Expansion of (1 - (1-256*x)^(1/4)) / (64*x). 5
1, 96, 14336, 2523136, 484442112, 98180268032, 20645907791872, 4459516083044352, 983075545417777152, 220208922173582082048, 49967406340478261526528, 11459191854083014643417088, 2651480699775516003646046208, 618173786004806016850049630208
(list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 - (1-256*x)^(1/4)) / (64*x).
a(n) ~ 256^n / (Gamma(3/4) * n^(5/4)).
Recurrence: (n+1)*a(n) = 64*(4*n-1)*a(n-1).
a(n) = 256^n * Gamma(n+3/4) / (Gamma(3/4) * Gamma(n+2)).
E.g.f.: hypergeom([3/4], [2], 256*x). - Vaclav Kotesovec, Jan 28 2015
From Peter Bala, Sep 01 2017: (Start)
a(n) = (-1)^n*binomial(1/4, n+1)*4^(4*n+1). Cf. A000108(n) = (-1)^n*binomial(1/2, n+1)*2^(2*n+1).
a(n) = 16^n*A025749(n+1); a(n) = 32^n*A048779(n+1).
(End)
MATHEMATICA
CoefficientList[Series[(1-(1-256*x)^(1/4)) / (64*x), {x, 0, 20}], x]
CoefficientList[Series[Hypergeometric1F1[3/4, 2, 256*x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2015 *)
PROG
(Magma) [Round(2^(8*n)*Gamma(n+3/4)/(Gamma(3/4)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022
(SageMath) [2^(8*n)*rising_factorial(3/4, n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022
CROSSREFS
Sequence in context: A189909 A189903 A189159 * A216039 A208443 A183418
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 27 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 02:20 EDT 2024. Contains 376003 sequences. (Running on oeis4.)