login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253832
a(n) = a(n-1) * (1 + a(n-2)/a(n-4)), a(0) = a(1) = a(2) = a(3) = 1.
1
1, 1, 1, 1, 2, 4, 12, 60, 420, 6720, 241920, 27336960, 15773425920, 64182070068480, 4184799332605032960, 9825130460280752853949440, 2606675287692747620296839987164160, 399035505430293222012069797891526139192304640
OFFSET
0,5
COMMENTS
This sequence is similar to A005831 except for the division.
LINKS
FORMULA
0 = a(n)*(a(n+3) - a(n+4)) + a(n+2)*a(n+3) for all n >= 0.
a(n+1) = a(n) * A253853(n) for all n >= 0.
a(n) ~ b * f^(d^n), where b = 0.103038949751108..., f = c^(1/(d-1)) = 2.4130332882212... and d = ((27-3*sqrt(69))/2)^(1/3) / 3 + ((9+sqrt(69))/2)^(1/3) / 3^(2/3) = 1.324717957244746... is the root of the equation d^3 = d + 1. For the constant c = 1.33114442478885300080049... see A253853. - Vaclav Kotesovec, Jan 18 2015
MATHEMATICA
RecurrenceTable[{a[n]==a[n-1]*(1 + a[n-2]/a[n-4]), a[0]==1, a[1]==1, a[2]==1, a[3]==1}, a, {n, 0, 20}] (* Vaclav Kotesovec, Jan 18 2015 *)
nxt[{a_, b_, c_, d_}]:={b, c, d, d(1+c/a)}; NestList[nxt, {1, 1, 1, 1}, 20][[All, 1]] (* Harvey P. Dale, Dec 27 2022 *)
PROG
(PARI) {a(n) = if( n<4, n>=0, a(n-1) * (1 + a(n-2) / a(n-4)))};
(Magma) I:=[1, 1, 1, 1]; [n le 4 select I[n] else Self(n-1)*(1 + Self(n-2)/Self(n-4)): n in [1..20]]; // G. C. Greubel, Aug 03 2018
CROSSREFS
Sequence in context: A118456 A326861 A013202 * A004400 A005831 A136512
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 17 2015
STATUS
approved