The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326861 E.g.f.: Product_{k>=1} (1 + x^(3*k-2)/(3*k-2)) / (1 - x^(3*k-2)/(3*k-2)). 2
 1, 2, 4, 12, 60, 360, 2160, 16560, 149040, 1386720, 14592960, 174208320, 2173897440, 29413264320, 437473872000, 6792952636800, 112213292716800, 2002551280012800, 37194983281843200, 726119227314201600, 15112608758893324800, 326665495054151193600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, if c > 0, d = 1-c and e.g.f. = Product_{k>=1} (1 + x^(c*k+d)/(c*k+d)) / (1 - x^(c*k+d)/(c*k+d)), then a(n) ~ 2 * n^(2/c) * n! / (c^(2/c) * exp(2*gamma/c) * Gamma(1 + 2/c)^2), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function. LINKS FORMULA a(n) ~ 3^(7/3) * exp(-2*gamma/3) * Gamma(1/3)^2 * n^(2/3) * n! / (8 * Pi^2), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function. MATHEMATICA nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-2)/(3*k-2))/(1-x^(3*k-2)/(3*k-2)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]! CROSSREFS Cf. A305199, A326756, A326858, A326860. Sequence in context: A076244 A058255 A118456 * A013202 A253832 A004400 Adjacent sequences:  A326858 A326859 A326860 * A326862 A326863 A326864 KEYWORD nonn AUTHOR Vaclav Kotesovec, Jul 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 21:07 EST 2021. Contains 349344 sequences. (Running on oeis4.)