login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004400
a(n) = 1 + Sum_{k=0..n} 2^k*k!.
(Formerly M1263)
4
1, 2, 4, 12, 60, 444, 4284, 50364, 695484, 11017404, 196811964, 3912703164, 85662309564, 2047652863164, 53059407256764, 1481388530277564, 44331262220901564, 1415527220320869564, 48036189795719781564, 1726380042510080613564, 65503446445655792229564, 2616586102571484256869564
OFFSET
-1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
From Robert Israel, Dec 29 2015: (Start)
E.g.f. (without the n = -1 term): e^x + 1/(1 - 2*x) - e^(x - 1/2)*(Ei(1/2 - x)-Ei(1/2))/2.
a(n+2) = (2*n + 5)*a(n+1) - (2*n + 4)*a(n). (End)
MAPLE
seq(1+add(2^k*k!, k=0..n), n=-1..30); # Robert Israel, Dec 29 2015
MATHEMATICA
Join[{1}, Table[Sum[2^k k!, {k, 0, n}], {n, 0, 30}]+1] (* Harvey P. Dale, Jun 22 2022 *)
PROG
(PARI) a(n) = 1 + sum(k=0, n, 2^k*k!); \\ Michel Marcus, Dec 30 2015
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Typo in name corrected by Sean A. Irvine, Dec 29 2015
STATUS
approved