login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253335
Number of (n+2)X(1+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 3, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
1
69, 488, 1928, 7494, 27015, 87621, 319172, 945613, 2874539, 6935762, 22983454, 49969332, 119548267, 214145613, 622017082, 1069718995, 2070309209, 3028231177, 7700984072, 11401562937, 19017598555, 24702675207, 56114922678, 75683326471
OFFSET
1,1
COMMENTS
Column 1 of A253342.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +12*a(n-4) -12*a(n-5) -66*a(n-8) +66*a(n-9) +220*a(n-12) -220*a(n-13) -495*a(n-16) +495*a(n-17) +792*a(n-20) -792*a(n-21) -924*a(n-24) +924*a(n-25) +792*a(n-28) -792*a(n-29) -495*a(n-32) +495*a(n-33) +220*a(n-36) -220*a(n-37) -66*a(n-40) +66*a(n-41) +12*a(n-44) -12*a(n-45) -a(n-48) +a(n-49) for n>66
Empirical for n mod 4 = 0: a(n) = (1/34214400)*n^12 + (19/3326400)*n^11 + (11413/21772800)*n^10 + (2543/120960)*n^9 + (171211/1036800)*n^8 - (17681/1800)*n^7 - (364775123/3110400)*n^6 + (503575579/120960)*n^5 - (23104979617/5443200)*n^4 - (42603595499/75600)*n^3 + (271867785329/59400)*n^2 - (1488535171/330)*n - 43423533 for n>17
Empirical for n mod 4 = 1: a(n) = (1/34214400)*n^12 + (19/3326400)*n^11 + (11329/21772800)*n^10 + (139/6720)*n^9 + (1113277/7257600)*n^8 - (80513/8400)*n^7 - (321868919/3110400)*n^6 + (24501551/6048)*n^5 - (2717152987/340200)*n^4 - (13345114753/25200)*n^3 + (32592081480029/6652800)*n^2 - (327571973557/36960)*n - (2047419033/64) for n>17
Empirical for n mod 4 = 2: a(n) = (1/34214400)*n^12 + (107/19958400)*n^11 + (1453/3110400)*n^10 + (12203/725760)*n^9 + (59611/1036800)*n^8 - (2635259/302400)*n^7 - (138251441/3110400)*n^6 + (2772874619/725760)*n^5 - (630113333/24300)*n^4 - (150767030627/453600)*n^3 + (1190430331397/237600)*n^2 - (972074050223/55440)*n - (25910239/4) for n>17
Empirical for n mod 4 = 3: a(n) = (1/34214400)*n^12 + (11/1814400)*n^11 + (12403/21772800)*n^10 + (3487/145152)*n^9 + (1620937/7257600)*n^8 - (1082489/100800)*n^7 - (453300833/3110400)*n^6 + (3176992123/725760)*n^5 + (6382948247/1360800)*n^4 - (646363851967/907200)*n^3 + (35282024010953/6652800)*n^2 - (80650610293/20160)*n - (3453848023/64) for n>17
EXAMPLE
Some solutions for n=4
..0..2..1....0..3..2....0..1..1....0..1..1....0..1..0....0..2..1....0..2..2
..2..2..1....2..4..1....2..2..1....2..2..0....1..2..0....1..3..0....2..1..1
..1..1..2....2..1..3....1..1..2....1..0..2....0..0..1....1..1..2....1..1..2
..2..1..2....3..2..3....2..2..2....1..1..1....1..0..1....2..1..2....1..1..1
..1..1..1....2..2..2....1..2..2....0..2..0....0..1..0....1..2..1....1..2..1
..2..3..2....3..3..2....3..2..2....1..2..1....0..2..0....2..2..2....2..1..1
Knight distance matrix for n=4
..0..3..2
..3..4..1
..2..1..4
..3..2..3
..2..3..2
..3..4..3
CROSSREFS
Sequence in context: A161486 A236158 A253342 * A234832 A234825 A251010
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 30 2014
STATUS
approved