login
A253342
T(n,k)=Number of (n+2)X(k+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 3, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
9
69, 488, 488, 1928, 2028, 1928, 7494, 11581, 11581, 7494, 27015, 59519, 100512, 59519, 27015, 87621, 306822, 722826, 722826, 306822, 87621, 319172, 1472184, 5136108, 7184212, 5136108, 1472184, 319172, 945613, 7426426, 32653458, 65795210
OFFSET
1,1
COMMENTS
Table starts
......69.......488........1928..........7494...........27015.............87621
.....488......2028.......11581.........59519..........306822...........1472184
....1928.....11581......100512........722826.........5136108..........32653458
....7494.....59519......722826.......7184212........65795210.........621408160
...27015....306822.....5136108......65795210.......900035309.......11880244815
...87621...1472184....32653458.....621408160.....11880244815......198343663311
..319172...7426426...237047904....6203113283....143441370184.....3788905574401
..945613..30066852..1348380871...46327921378...1729766633007....65148353195615
.2874539.142944394..8419903755..431150608201..22265080961901...946743614051298
.6935762.470066369.34660596075.2513803675142.168952079085709.12716755528646645
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 49] for n>66
k=2: [order 25] for n>43
k=3: [order 49] for n>71
k=4: [order 25] for n>55
k=5: [order 49] for n>91
k=6: [order 25] for n>93
Empirical quasipolynomials for column k:
k=1: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 4 for n>17
k=2: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 2 for n>18
k=3: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 4 for n>32
k=4: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 2 for n>30
k=5: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 4 for n>42
k=6: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 2 for n>68
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1..1..2....0..1..0..1..1..0....0..0..1..1..0..0....0..0..0..0..0..1
..0..1..0..1..1..1....0..1..0..0..1..1....1..1..0..0..1..1....1..1..0..0..0..1
..0..0..1..1..1..1....1..0..1..1..0..1....0..0..1..1..0..1....0..0..1..0..0..0
..0..0..1..0..1..2....1..0..1..0..0..1....0..0..1..1..1..1....0..0..0..0..1..1
..1..0..0..1..2..1....0..1..0..0..2..0....0..1..0..0..2..1....0..0..0..0..1..1
Knight distance matrix for n=3
..0..3..2..3..2..3
..3..4..1..2..3..4
..2..1..4..3..2..3
..3..2..3..2..3..4
..2..3..2..3..4..3
CROSSREFS
Sequence in context: A262456 A161486 A236158 * A253335 A234832 A234825
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 30 2014
STATUS
approved