login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253342
T(n,k)=Number of (n+2)X(k+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 3, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
9
69, 488, 488, 1928, 2028, 1928, 7494, 11581, 11581, 7494, 27015, 59519, 100512, 59519, 27015, 87621, 306822, 722826, 722826, 306822, 87621, 319172, 1472184, 5136108, 7184212, 5136108, 1472184, 319172, 945613, 7426426, 32653458, 65795210
OFFSET
1,1
COMMENTS
Table starts
......69.......488........1928..........7494...........27015.............87621
.....488......2028.......11581.........59519..........306822...........1472184
....1928.....11581......100512........722826.........5136108..........32653458
....7494.....59519......722826.......7184212........65795210.........621408160
...27015....306822.....5136108......65795210.......900035309.......11880244815
...87621...1472184....32653458.....621408160.....11880244815......198343663311
..319172...7426426...237047904....6203113283....143441370184.....3788905574401
..945613..30066852..1348380871...46327921378...1729766633007....65148353195615
.2874539.142944394..8419903755..431150608201..22265080961901...946743614051298
.6935762.470066369.34660596075.2513803675142.168952079085709.12716755528646645
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 49] for n>66
k=2: [order 25] for n>43
k=3: [order 49] for n>71
k=4: [order 25] for n>55
k=5: [order 49] for n>91
k=6: [order 25] for n>93
Empirical quasipolynomials for column k:
k=1: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 4 for n>17
k=2: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 2 for n>18
k=3: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 4 for n>32
k=4: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 2 for n>30
k=5: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 4 for n>42
k=6: polynomial of degree 12 plus a quasipolynomial of degree 11 with period 2 for n>68
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1..1..2....0..1..0..1..1..0....0..0..1..1..0..0....0..0..0..0..0..1
..0..1..0..1..1..1....0..1..0..0..1..1....1..1..0..0..1..1....1..1..0..0..0..1
..0..0..1..1..1..1....1..0..1..1..0..1....0..0..1..1..0..1....0..0..1..0..0..0
..0..0..1..0..1..2....1..0..1..0..0..1....0..0..1..1..1..1....0..0..0..0..1..1
..1..0..0..1..2..1....0..1..0..0..2..0....0..1..0..0..2..1....0..0..0..0..1..1
Knight distance matrix for n=3
..0..3..2..3..2..3
..3..4..1..2..3..4
..2..1..4..3..2..3
..3..2..3..2..3..4
..2..3..2..3..4..3
CROSSREFS
Sequence in context: A262456 A161486 A236158 * A253335 A234832 A234825
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 30 2014
STATUS
approved