login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253338
Number of (n+2)X(4+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 3, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
1
7494, 59519, 722826, 7184212, 65795210, 621408160, 6203113283, 46327921378, 431150608201, 2513803675142, 21694110698916, 91728436841790, 701214300325482, 2062603211477260, 13146712894951064, 29023341800426220
OFFSET
1,1
COMMENTS
Column 4 of A253342.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +12*a(n-2) -12*a(n-3) -66*a(n-4) +66*a(n-5) +220*a(n-6) -220*a(n-7) -495*a(n-8) +495*a(n-9) +792*a(n-10) -792*a(n-11) -924*a(n-12) +924*a(n-13) +792*a(n-14) -792*a(n-15) -495*a(n-16) +495*a(n-17) +220*a(n-18) -220*a(n-19) -66*a(n-20) +66*a(n-21) +12*a(n-22) -12*a(n-23) -a(n-24) +a(n-25) for n>55.
Empirical for n mod 2 = 0: a(n) = (8992587776/93555)*n^12 - (1754527694848/155925)*n^11 + (4454499745792/6075)*n^10 - (97850932330496/2835)*n^9 + (503920339091456/405)*n^8 - (163857161734094848/4725)*n^7 + (31746767654773668352/42525)*n^6 - (34889484014881237376/2835)*n^5 + (184886920914132728164/1215)*n^4 - (19246032261612188624813/14175)*n^3 + (485106832651191238006429/59400)*n^2 - (403481645478857418044233/13860)*n + 44942549657886439191 for n>30.
Empirical for n mod 2 = 1: a(n) = (8992587776/93555)*n^12 - (524891979776/51975)*n^11 + (734730911744/1215)*n^10 - (75896779177984/2835)*n^9 + (370458004717568/405)*n^8 - (113927599393374208/4725)*n^7 + (4158011324223812096/8505)*n^6 - (7143754455560924288/945)*n^5 + (105914562844059145828/1215)*n^4 - (10178334481445614975453/14175)*n^3 + (46495471701987542783201/11880)*n^2 - (84473612843189842494151/6930)*n + (120539555998778748191/8) for n>30.
EXAMPLE
Some solutions for n=2
..0..1..0..1..0..2....0..2..1..2..2..1....0..2..2..3..1..3....0..1..1..1..0..1
..1..2..0..1..1..2....2..2..1..1..2..2....2..3..1..2..2..3....1..1..0..1..1..2
..1..0..1..1..1..1....2..1..2..2..1..2....2..1..3..2..2..2....0..0..2..1..1..1
..2..0..1..0..1..2....3..2..2..2..2..3....3..1..3..2..2..3....2..0..1..1..2..1
Knight distance matrix for n=2
..0..3..2..3..2..3
..3..4..1..2..3..4
..2..1..4..3..2..3
..5..2..3..2..3..4
CROSSREFS
Sequence in context: A250971 A250239 A330713 * A252960 A258612 A258605
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 30 2014
STATUS
approved