login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253114
Number of (n+2)X(3+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 2, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
1
1342, 6334, 64228, 426571, 2801464, 11529235, 79249122, 269081698, 1126140254, 2033916546, 10398959008, 19253327106, 49068963720, 62663185107, 216434297394, 306964534797, 600045409295, 683103473164, 1832436683833, 2296747272574
OFFSET
1,1
COMMENTS
Column 3 of A253119
LINKS
FORMULA
Empirical: a(n) = a(n-1) +8*a(n-4) -8*a(n-5) -28*a(n-8) +28*a(n-9) +56*a(n-12) -56*a(n-13) -70*a(n-16) +70*a(n-17) +56*a(n-20) -56*a(n-21) -28*a(n-24) +28*a(n-25) +8*a(n-28) -8*a(n-29) -a(n-32) +a(n-33) for n>48.
Empirical for n mod 4 = 0: a(n) = (48128/315)*n^8 - (70784/45)*n^7 + (1613986/45)*n^6 - (408827287/360)*n^5 + (656806290529/46080)*n^4 - (417508867243/5760)*n^3 + (1340641181597/20160)*n^2 + (68326310189/120)*n - 1314231925 for n>15.
Empirical for n mod 4 = 1: a(n) = (48128/315)*n^8 - (399232/315)*n^7 + (494198/15)*n^6 - (391895399/360)*n^5 + (200444821003/15360)*n^4 - (719258439109/11520)*n^3 + (8134684965509/161280)*n^2 + (12687388527967/26880)*n - (1104560946555/1024) for n>15.
Empirical for n mod 4 = 2: a(n) = (48128/315)*n^8 - (784256/315)*n^7 + (254546/5)*n^6 - (494044999/360)*n^5 + (99930960601/5120)*n^4 - (787756612561/5760)*n^3 + (17328260184551/40320)*n^2 - (780223082251/3360)*n - (71148317231/64) for n>15.
Empirical for n mod 4 = 3: a(n) = (48128/315)*n^8 - (110464/315)*n^7 + (516898/45)*n^6 - (54346123/72)*n^5 + (321821523169/46080)*n^4 + (153162748967/11520)*n^3 - (67343538926807/161280)*n^2 + (8549722002355/5376)*n - (1254021550131/1024) for n>15.
EXAMPLE
Some solutions for n=3:
..0..2..2..2..2....0..2..2..1..2....0..1..1..1..0....0..2..0..1..1
..2..3..1..2..2....2..2..1..2..2....1..2..0..0..1....1..2..1..1..1
..2..1..3..2..1....1..1..2..2..1....1..0..2..1..1....1..0..2..1..1
..2..2..2..2..2....2..1..2..1..2....1..1..1..1..1....1..1..1..1..1
..2..2..1..2..3....2..2..1..1..2....0..1..1..1..2....0..1..0..1..2
Knight distance matrix for n=3:
..0..3..2..3..2
..3..4..1..2..3
..2..1..4..3..2
..3..2..3..2..3
..2..3..2..3..4
CROSSREFS
Sequence in context: A043647 A023064 A252266 * A237506 A264385 A167437
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 27 2014
STATUS
approved