login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253112
Number of (n+2)X(1+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 2, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
1
53, 272, 1342, 4619, 14541, 34786, 113891, 233392, 525617, 853971, 2327441, 3609337, 6243433, 8189113, 18881723, 25291483, 37714007, 44777219, 90840301, 112309445, 153843349, 173399285, 320621751, 377531207, 490093227, 535756183
OFFSET
1,1
COMMENTS
Column 1 of A253119.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +8*a(n-4) -8*a(n-5) -28*a(n-8) +28*a(n-9) +56*a(n-12) -56*a(n-13) -70*a(n-16) +70*a(n-17) +56*a(n-20) -56*a(n-21) -28*a(n-24) +28*a(n-25) +8*a(n-28) -8*a(n-29) -a(n-32) +a(n-33) for n>43.
Empirical for n mod 4 = 0: a(n) = (1/2880)*n^8 + (1/35)*n^7 + (169/160)*n^6 + (91/12)*n^5 - (170437/960)*n^4 - (4291/60)*n^3 + (547067/45)*n^2 - (1847017/42)*n - 22525 for n>10.
Empirical for n mod 4 = 1: a(n) = (1/2880)*n^8 + (1/35)*n^7 + (1493/1440)*n^6 + (871/120)*n^5 - (506711/2880)*n^4 + (3067/30)*n^3 + (1371401/120)*n^2 - (11084513/210)*n + (371127/16) for n>10.
Empirical for n mod 4 = 2: a(n) = (1/2880)*n^8 + (13/504)*n^7 + (85/96)*n^6 + (2389/720)*n^5 - (50539/320)*n^4 + (93863/144)*n^3 + (142985/18)*n^2 - (26157409/420)*n + (399767/4) for n>10.
Empirical for n mod 4 = 3: a(n) = (1/2880)*n^8 + (79/2520)*n^7 + (187/160)*n^6 + (7409/720)*n^5 - (190777/960)*n^4 - (235699/720)*n^3 + (5757523/360)*n^2 - (52286503/840)*n + (146121/16) for n>10
EXAMPLE
Some solutions for n=4:
..0..3..2....0..3..1....0..2..1....0..2..1....0..2..1....0..1..1....0..1..1
..3..2..1....2..4..1....2..3..1....1..2..1....1..2..0....2..2..1....1..2..0
..2..1..3....2..1..3....1..1..2....1..1..2....1..1..2....1..1..2....1..1..2
..2..2..2....3..2..3....2..2..2....2..1..2....2..1..1....2..1..1....2..1..1
..2..3..2....2..2..2....1..2..1....1..1..2....1..2..1....1..2..2....1..2..1
..2..2..2....3..4..3....2..2..2....2..3..2....2..2..1....2..2..2....1..2..2
Knight distance matrix for n=4:
..0..3..2
..3..4..1
..2..1..4
..3..2..3
..2..3..2
..3..4..3
CROSSREFS
Sequence in context: A140851 A337428 A253119 * A211146 A155700 A108878
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 27 2014
STATUS
approved