login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253115
Number of (n+2)X(4+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 2, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
1
4619, 28600, 426571, 3950239, 28256241, 201911670, 1873418602, 7421334529, 54446797689, 133685068828, 745867325532, 1354111174816, 5818864244979, 8824640573225, 30688212938784, 41602065842866, 122867434214623
OFFSET
1,1
COMMENTS
Column 4 of A253119
LINKS
FORMULA
Empirical: a(n) = a(n-1) +8*a(n-2) -8*a(n-3) -28*a(n-4) +28*a(n-5) +56*a(n-6) -56*a(n-7) -70*a(n-8) +70*a(n-9) +56*a(n-10) -56*a(n-11) -28*a(n-12) +28*a(n-13) +8*a(n-14) -8*a(n-15) -a(n-16) +a(n-17) for n>37.
Empirical for n mod 2 = 0: a(n) = (17563648/63)*n^8 - (753270784/45)*n^7 + (4959576064/9)*n^6 - (567642929152/45)*n^5 + (1853435878336/9)*n^4 - (104612636971216/45)*n^3 + (119980082024136/7)*n^2 - (2219288775756637/30)*n + 140910866347888 for n>20.
Empirical for n mod 2 = 1: a(n) = (17563648/63)*n^8 - (1523449856/105)*n^7 + (19261530112/45)*n^6 - (136247502848/15)*n^5 + (1247647337408/9)*n^4 - (21746003662832/15)*n^3 + (3075715875376376/315)*n^2 - (2653723481992701/70)*n + (127386927252109/2) for n>20.
EXAMPLE
Some solutions for n=2:
..0..2..1..2..2..2....0..2..1..2..1..2....0..2..1..2..1..2....0..1..1..1..1..1
..2..3..1..1..2..2....2..2..1..1..2..2....1..2..0..1..1..2....2..2..1..1..2..2
..2..0..2..2..1..2....1..1..2..2..2..2....1..0..2..1..1..1....1..0..2..2..1..1
..3..2..2..1..2..3....3..2..2..2..1..3....3..1..2..0..2..2....3..1..2..1..2..2
Knight distance matrix for n=2:
..0..3..2..3..2..3
..3..4..1..2..3..4
..2..1..4..3..2..3
..5..2..3..2..3..4
CROSSREFS
Sequence in context: A265926 A365483 A260054 * A189983 A295431 A338337
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 27 2014
STATUS
approved