|
|
A167437
|
|
Positive integers c such that c^2 = a + b and a^2 + b^2 = m^4 for some coprime integers a, b, m.
|
|
3
|
|
|
1, 1343, 2372159, 9788425919, 5705771236038721, 17999572487701067948161, 173658539553825212149513251457, 75727152767742719949099952561135816319, 437825148963391521638828389137484882137402791039
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Corresponding values of m are given in A166929 - see it for further details.
Terms with positive a, b are given in A167438.
This is the absolute value of a bisection of a generalized Somos-5 sequence. - Michael Somos, Nov 04 2022
|
|
LINKS
|
Table of n, a(n) for n=1..9.
|
|
PROG
|
(PARI) {a(n) = local(x, v); n = abs(2*n+1); (x = m-> v[abs(m)+1]); v = vector(max(3, n+1), m, 1); v[3] = -3; for(k=3, n, v[k+1] = -(13*x(k-1)*x(k-4) + 42*x(k-2)*x(k-3)) / x(k-5)); abs(x(n))}; /* Michael Somos, Nov 04 2022 */
|
|
CROSSREFS
|
Sequence in context: A253114 A237506 A264385 * A259675 A205820 A202430
Adjacent sequences: A167434 A167435 A167436 * A167438 A167439 A167440
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Max Alekseyev, Nov 03 2009
|
|
STATUS
|
approved
|
|
|
|