login
A252717
Number of (n+2) X (6+2) 0..3 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order.
1
175, 91, 110, 132, 191, 262, 324, 478, 664, 828, 1231, 1718, 2148, 3203, 4478, 5604, 8366, 11704, 14652, 21883, 30622, 38340, 57271, 80150, 100356, 149918, 209816, 262716, 392471, 549286, 687780, 1027483, 1438030, 1800612, 2689966, 3764792
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - a(n-6) + a(n-7) for n>9.
Empirical g.f.: x*(175 - 84*x + 19*x^2 - 503*x^3 + 311*x^4 + 14*x^5 + 171*x^6 - 107*x^7 - 8*x^8) / ((1 - x)*(1 - 3*x^3 + x^6)). - Colin Barker, Dec 05 2018
EXAMPLE
Some solutions for n=4:
..0..0..1..0..0..1..0..0....0..0..1..0..0..1..0..0....0..1..1..0..1..1..0..1
..0..2..2..0..2..2..0..2....2..1..1..2..1..1..2..1....1..0..1..1..0..1..1..2
..0..3..0..0..1..0..0..1....1..2..1..1..2..1..1..2....3..3..1..3..3..1..3..3
..0..0..3..0..0..1..0..0....0..0..1..0..0..1..0..0....0..1..1..0..1..1..0..1
..0..2..2..0..2..2..0..2....2..1..1..2..1..1..2..1....1..0..1..1..0..1..1..0
..0..1..0..0..3..0..0..1....1..3..1..1..2..1..1..2....3..3..1..3..3..1..3..3
CROSSREFS
Column 6 of A252719.
Sequence in context: A185525 A224433 A213866 * A187425 A186218 A245035
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 20 2014
STATUS
approved