login
A252715
Number of (n+2) X (4+2) 0..3 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order.
1
96, 63, 70, 97, 135, 178, 257, 368, 492, 722, 1047, 1406, 2077, 3031, 4074, 6037, 8844, 11884, 17642, 25919, 34806, 51737, 76191, 102242, 152137, 224512, 301068, 448402, 662943, 888430, 1324277, 1961135, 2626650, 3918077, 5810940, 7778828, 11610922
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 6*a(n-3) - 6*a(n-4) - 10*a(n-6) + 10*a(n-7) + 3*a(n-9) - 3*a(n-10) for n>12.
Empirical g.f.: x*(96 - 33*x + 7*x^2 - 549*x^3 + 236*x^4 + x^5 + 877*x^6 - 447*x^7 - 64*x^8 - 262*x^9 + 138*x^10 + 24*x^11) / ((1 - x)*(1 - 3*x^3)*(1 - 3*x^3 + x^6)). - Colin Barker, Dec 05 2018
EXAMPLE
Some solutions for n=4:
..0..1..1..0..1..1....0..1..1..0..1..1....0..1..0..0..1..0....0..0..1..0..0..2
..0..2..0..0..3..0....1..0..1..1..0..1....2..2..0..2..2..0....0..3..3..0..3..3
..0..0..2..0..0..3....2..2..1..2..2..1....3..0..0..1..0..0....0..1..0..0..1..0
..0..1..1..0..1..1....0..1..1..0..1..1....0..3..0..0..1..0....0..0..1..0..0..1
..0..2..0..0..2..0....1..0..1..1..0..1....2..2..0..2..2..0....0..3..3..0..3..3
..0..0..2..0..0..2....2..2..1..2..2..1....1..0..0..3..0..0....0..2..0..0..1..0
CROSSREFS
Column 4 of A252719.
Sequence in context: A057400 A216404 A033416 * A050277 A090221 A334654
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 20 2014
STATUS
approved