login
A252714
Number of (n+2) X (3+2) 0..3 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order.
1
70, 50, 62, 80, 119, 170, 224, 341, 494, 656, 1007, 1466, 1952, 3005, 4382, 5840, 8999, 13130, 17504, 26981, 39374, 52496, 80927, 118106, 157472, 242765, 354302, 472400, 728279, 1062890, 1417184, 2184821, 3188654, 4251536, 6554447, 9565946, 12754592
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) for n>6.
Empirical g.f.: x*(70 - 20*x + 12*x^2 - 192*x^3 + 99*x^4 + 15*x^5) / ((1 - x)*(1 - 3*x^3)). - Colin Barker, Dec 05 2018
EXAMPLE
Some solutions for n=4:
..0..1..0..0..1....0..1..0..0..1....0..1..1..2..2....0..1..1..0..1
..2..2..0..2..2....2..2..0..2..2....2..2..3..3..0....1..0..1..1..2
..1..0..0..1..0....3..0..0..1..0....3..0..0..1..1....3..3..1..3..3
..0..1..0..0..1....0..3..0..0..1....1..1..2..2..3....2..1..1..0..1
..2..2..0..2..2....2..2..0..2..2....2..3..3..0..0....1..2..1..1..0
..1..0..0..1..0....1..0..0..3..0....0..0..1..1..2....3..3..1..3..3
CROSSREFS
Column 3 of A252719.
Sequence in context: A129352 A318571 A156810 * A245046 A265727 A166506
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 20 2014
STATUS
approved