login
A252718
Number of (n+2) X (7+2) 0..3 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order.
1
237, 107, 114, 153, 211, 270, 373, 522, 672, 938, 1322, 1704, 2388, 3379, 4354, 6113, 8673, 11166, 15693, 22312, 28696, 40358, 57486, 73856, 103928, 148285, 190314, 267933, 382891, 490926, 691453, 989592, 1267608, 1786118, 2559836, 3276048
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-3) - 11*a(n-6) + 5*a(n-9) + 2*a(n-12) - a(n-15) for n>17.
Empirical g.f.: x*(237 + 107*x + 114*x^2 - 1269*x^3 - 431*x^4 - 414*x^5 + 2062*x^6 + 433*x^7 + 306*x^8 - 802*x^9 - 24*x^10 + 72*x^11 - 376*x^12 - 80*x^13 - 56*x^14 + 169*x^15 + 16*x^16) / ((1 - x)*(1 + x + x^2)*(1 - 3*x^3 + x^6)*(1 - 2*x^3 - x^6)). - Colin Barker, Dec 05 2018
EXAMPLE
Some solutions for n=4:
..0..0..1..0..0..2..0..0..2....0..1..0..0..1..0..0..1..0
..2..0..0..1..0..0..2..0..0....1..1..2..1..1..3..1..1..3
..3..0..3..3..0..3..3..0..3....3..1..1..2..1..1..3..1..1
..0..0..2..0..0..1..0..0..2....0..1..0..0..1..0..0..1..0
..1..0..0..2..0..0..1..0..0....1..1..3..1..1..2..1..1..3
..3..0..3..3..0..3..3..0..3....2..1..1..3..1..1..2..1..1
CROSSREFS
Column 7 of A252719.
Sequence in context: A233200 A233221 A265372 * A036270 A217030 A048454
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 20 2014
STATUS
approved