login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249711
Number of length 5+3 0..n arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.
1
38, 377, 1724, 5425, 13666, 29673, 57912, 104289, 176350, 283481, 437108, 650897, 940954, 1326025, 1827696, 2470593, 3282582, 4294969, 5542700, 7064561, 8903378, 11106217, 13724584, 16814625, 20437326, 24658713, 29550052, 35188049, 41655050
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (5/3)*n^5 + 10*n^4 + 16*n^3 + 8*n^2 + (4/3)*n + 1.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: x*(38 + 149*x + 32*x^2 - 24*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
Some solutions for n=6:
..0....2....1....1....0....2....5....4....0....5....2....3....0....6....3....4
..1....2....5....5....4....5....2....4....3....2....2....3....2....0....3....2
..5....0....6....6....3....3....3....6....5....6....2....3....2....2....3....1
..1....6....5....5....3....3....3....4....3....5....6....6....4....2....1....2
..0....2....5....5....3....3....5....4....1....5....1....1....2....2....3....2
..1....2....5....5....0....0....3....0....3....5....2....3....2....2....5....2
..6....2....4....4....6....3....2....4....3....3....2....3....1....1....3....3
..1....2....5....6....3....5....3....5....5....5....3....6....6....5....3....1
CROSSREFS
Row 5 of A249707.
Sequence in context: A201244 A240263 A156661 * A220918 A187078 A155193
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 04 2014
STATUS
approved