login
A249713
Number of length 7+3 0..n arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.
1
72, 1177, 7056, 27113, 80360, 200489, 442144, 888465, 1659976, 2924889, 4910896, 7918521, 12336104, 18656489, 27495488, 39612193, 55931208, 77566873, 105849552, 142354057, 188930280, 247736105, 321272672, 412422065, 524487496, 661236057
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/70)*n^7 + (19/15)*n^6 + (178/15)*n^5 + 30*n^4 + (851/30)*n^3 + (56/15)*n^2 - (446/105)*n + 1.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: x*(72 + 601*x - 344*x^2 - 411*x^3 + 152*x^4 - 5*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=5:
..5....4....1....3....1....3....5....1....1....4....3....5....2....2....3....3
..0....0....2....3....5....1....0....3....3....4....3....0....2....4....1....0
..1....4....1....3....1....0....3....1....1....4....3....4....4....4....2....1
..1....5....1....3....1....1....3....1....1....4....3....4....2....4....2....1
..1....4....0....3....0....2....3....1....1....4....0....4....2....2....3....2
..1....3....3....3....1....1....4....1....0....1....4....0....2....4....2....1
..0....4....1....3....4....1....1....0....1....4....3....4....2....4....2....1
..1....5....1....3....1....0....3....4....3....4....3....4....2....5....2....1
..3....4....1....4....0....3....3....1....1....5....1....5....1....4....2....5
..1....2....4....3....1....1....4....1....0....2....3....3....4....0....4....0
CROSSREFS
Row 7 of A249707.
Sequence in context: A064567 A269088 A168194 * A269074 A200556 A239423
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 04 2014
STATUS
approved