login
A249707
T(n,k)=Number of length n+3 0..k arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms
13
10, 39, 14, 100, 69, 20, 205, 208, 125, 28, 366, 485, 440, 221, 38, 595, 966, 1153, 896, 377, 52, 904, 1729, 2524, 2601, 1724, 659, 72, 1305, 2864, 4893, 6172, 5425, 3440, 1177, 100, 1810, 4473, 8688, 12789, 13666, 11925, 7056, 2119, 138, 2431, 6670, 14433
OFFSET
1,1
COMMENTS
Table starts
..10...39...100....205.....366.....595.....904.....1305.....1810.....2431
..14...69...208....485.....966....1729....2864.....4473.....6670.....9581
..20..125...440...1153....2524....4893....8688....14433....22756....34397
..28..221...896...2601....6172...12789...24032....41937....69052...108493
..38..377..1724...5425...13666...29673...57912...104289...176350...283481
..52..659..3440..11925...32500...75495..156416...297321...528340...889339
..72.1177..7056..27113...80360..200489..442144...888465..1659976..2924889
.100.2119.14544..61725..198164..528755.1235840..2613945..5113060..9391327
.138.3805.29620.137593..474302.1341901.3295784..7275729.14775346.28054653
.190.6857.60416.307437.1140694.3434085.8902160.20616873.43717054.86348977
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-4)
k=2: [order 10]
k=3: [order 17]
k=4: [order 24]
k=5: [order 30]
k=6: [order 37]
k=7: [order 43]
Empirical for row n:
n=1: a(n) = 2*n^3 + 4*n^2 + 3*n + 1
n=2: a(n) = (1/2)*n^4 + 4*n^3 + (11/2)*n^2 + 3*n + 1
n=3: a(n) = (1/15)*n^5 + 2*n^4 + 7*n^3 + 7*n^2 + (44/15)*n + 1
n=4: a(n) = (7/15)*n^5 + 5*n^4 + 11*n^3 + 8*n^2 + (38/15)*n + 1
n=5: a(n) = (5/3)*n^5 + 10*n^4 + 16*n^3 + 8*n^2 + (4/3)*n + 1
n=6: a(n) = (1/5)*n^6 + (73/15)*n^5 + 18*n^4 + 22*n^3 + (34/5)*n^2 - (13/15)*n + 1
n=7: a(n) = (1/70)*n^7 + (19/15)*n^6 + (178/15)*n^5 + 30*n^4 + (851/30)*n^3 + (56/15)*n^2 - (446/105)*n + 1
EXAMPLE
Some solutions for n=6 k=4
..3....3....2....4....1....4....3....4....3....1....0....3....3....2....3....2
..1....3....4....1....4....2....3....1....4....1....2....0....3....1....3....1
..0....3....0....1....1....0....2....1....3....2....2....0....3....1....4....2
..1....2....2....1....1....2....4....1....0....1....3....0....4....0....0....4
..1....4....2....4....0....4....3....2....3....1....2....0....2....1....3....2
..1....3....2....1....3....2....3....1....3....1....1....0....3....3....3....1
..0....3....0....1....1....1....3....1....3....3....2....0....3....1....4....2
..4....3....4....1....1....2....2....1....1....1....3....0....4....1....3....4
..1....0....2....0....0....2....3....4....4....0....2....1....1....0....2....2
CROSSREFS
Column 1 is A246473
Row 1 is A059722(n+1)
Sequence in context: A218081 A219823 A216591 * A228140 A156674 A360669
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 04 2014
STATUS
approved