login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187078
38 followed by n ones.
1
38, 381, 3811, 38111, 381111, 3811111, 38111111, 381111111, 3811111111, 38111111111, 381111111111, 3811111111111, 38111111111111, 381111111111111, 3811111111111111, 38111111111111111, 381111111111111111, 3811111111111111111, 38111111111111111111, 381111111111111111111
OFFSET
0,1
COMMENTS
Jones proves that 38 is the smallest composite number that produces only composite numbers when 1 is repeatedly appended to it.
Stan Wagon, who is working on similar numbers ending in 3, 7, and 9, reports that the upper bounds for those numbers are 4070, 891, and 10175, respectively. - T. D. Noe, Mar 08 2011
Today Stan Wagon found a 28899-digit probable prime 851777...777, which eliminated 851 as a possible prefix for the 7-case. Because it is easy to show the 891777...777 is composite for any number of 7's, this means that 891 is the solution for the 7-case of this problem. - T. D. Noe, Mar 08 2011
LINKS
FORMULA
From Bruno Berselli, Mar 09 2011: (Start)
G.f.: (38 - 37*x)/((1 - x)*(1 - 10*x)).
a(n) = (343*10^n - 1)/9. (End)
a(n) = 10*a(n-1) + 1 with n>0, a(0)=38. - Vincenzo Librandi, Jun 07 2011
MATHEMATICA
t = {38}; Do[AppendTo[t, 10*t[[-1]] + 1], {19}]; t
NestList[10#+1&, 38, 20] (* Harvey P. Dale, Sep 20 2017 *)
PROG
(Magma) [Seqint([1: n in [1..k]] cat Intseq(38)): k in [0..19]]; // Bruno Berselli, Mar 09 2011
(PARI) a(n)=343*10^n\9 \\ Charles R Greathouse IV, Sep 24 2012
CROSSREFS
Sequence in context: A156661 A249711 A220918 * A155193 A159943 A221634
KEYWORD
nonn,base,easy
AUTHOR
T. D. Noe, Mar 03 2011
STATUS
approved