login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249700
Denominators of coefficients in series expansion of Cl_2(x)+x*log(x), where Cl_2 is the Clausen function of order 2.
1
1, 1, 1, 72, 1, 14400, 1, 1270080, 1, 87091200, 1, 5269017600, 1, 203997201408000, 1, 15692092416000, 1, 2902409413263360000, 1, 1747310222272462848000, 1, 337200218333282304000000, 1, 7135156619932253552640000, 1, 1016294482039046201671680000000
OFFSET
0,4
LINKS
Eric Weisstein's MathWorld, Clausen Function
Eric Weisstein's MathWorld, Clausen's Integral
FORMULA
Denominators of BernoulliB(n - 1)/((n - 1)*n!), except the first 3 terms.
EXAMPLE
Coefficients begin 0, 1, 0, 1/72, 0, 1/14400, 0, 1/1270080, 0, 1/87091200, 0, 1/5269017600, 0, 691/203997201408000, ...
MATHEMATICA
Clausen2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); a[n_] := SeriesCoefficient[Clausen2[x] + x*Log[x], {x, 0, n}]; (* or *) a[n_] := If[Mod[n, 4] == 3, 1, -1]*BernoulliB[n - 1]/((n - 1)*n!); a[0] = a[2] = 0; a[1] = 1; Table[a[n] // Denominator, {n, 0, 30}] (* Apparently this only works with an older version of Mma *)
Flatten[{1, 1, Table[If[EvenQ[n], Denominator[Zeta[n]/(n*(n+1)*2^(n-1)*Pi^n)], 1], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 04 2014 *)
PROG
(Magma) [1, 1, 1] cat [Denominator(Bernoulli(n - 1)/((n - 1)*Factorial(n))) : n in [3..50]]; // Vincenzo Librandi, Nov 05 2014
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
STATUS
approved