login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of coefficients in series expansion of Cl_2(x)+x*log(x), where Cl_2 is the Clausen function of order 2.
1

%I #13 Sep 08 2022 08:46:10

%S 1,1,1,72,1,14400,1,1270080,1,87091200,1,5269017600,1,203997201408000,

%T 1,15692092416000,1,2902409413263360000,1,1747310222272462848000,1,

%U 337200218333282304000000,1,7135156619932253552640000,1,1016294482039046201671680000000

%N Denominators of coefficients in series expansion of Cl_2(x)+x*log(x), where Cl_2 is the Clausen function of order 2.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/ClausenFunction.html">Clausen Function</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/ClausensIntegral.html">Clausen's Integral</a>

%F Denominators of BernoulliB(n - 1)/((n - 1)*n!), except the first 3 terms.

%e Coefficients begin 0, 1, 0, 1/72, 0, 1/14400, 0, 1/1270080, 0, 1/87091200, 0, 1/5269017600, 0, 691/203997201408000, ...

%t Clausen2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); a[n_] := SeriesCoefficient[Clausen2[x] + x*Log[x], {x, 0, n}]; (* or *) a[n_] := If[Mod[n, 4] == 3, 1, -1]*BernoulliB[n - 1]/((n - 1)*n!); a[0] = a[2] = 0; a[1] = 1; Table[a[n] // Denominator, {n, 0, 30}] (* Apparently this only works with an older version of Mma *)

%t Flatten[{1, 1, Table[If[EvenQ[n], Denominator[Zeta[n]/(n*(n+1)*2^(n-1)*Pi^n)], 1],{n, 1, 20}]}] (* _Vaclav Kotesovec_, Nov 04 2014 *)

%o (Magma) [1,1,1] cat [Denominator(Bernoulli(n - 1)/((n - 1)*Factorial(n))) : n in [3..50]]; // _Vincenzo Librandi_, Nov 05 2014

%Y Cf. A027641, A027642, A249699.

%K nonn,frac

%O 0,4

%A _Jean-François Alcover_, Nov 04 2014