login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249701
Number of length n+3 0..2 arrays with every four consecutive terms having the maximum of some two terms equal to the minimum of the remaining two terms.
1
39, 69, 125, 221, 377, 659, 1177, 2119, 3805, 6857, 12437, 22681, 41475, 76011, 139645, 257161, 474439, 876539, 1621387, 3002407, 5564769, 10321599, 19156321, 35571383, 66081147, 122803551, 228283091, 424467169, 789412673, 1468380739
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) + 2*a(n-4) - 5*a(n-5) + a(n-6) -a(n-7) - 2*a(n-8) + 2*a(n-10).
Empirical g.f.: x*(39 - 48*x + 35*x^2 - 25*x^3 - 127*x^4 - 2*x^5 - 55*x^6 - 36*x^7 + 34*x^8 + 54*x^9) / ((1 + x)*(1 - 2*x + 2*x^2 - 2*x^3)*(1 - 2*x + x^2 - x^3 - x^4 + x^6)). - Colin Barker, Nov 09 2018
EXAMPLE
Some solutions for n=6:
..0....0....1....2....1....2....1....2....1....1....2....0....1....1....1....1
..1....1....0....0....2....2....2....1....0....1....1....1....0....0....1....2
..2....0....1....1....1....2....0....1....2....1....1....2....1....1....1....1
..1....0....1....1....0....2....1....1....1....1....1....1....1....2....1....1
..0....0....1....2....1....0....1....1....1....0....2....0....1....1....1....0
..1....0....1....1....1....2....1....1....1....1....0....1....0....1....1....1
..1....0....1....1....1....2....1....2....1....1....1....1....1....1....1....1
..2....0....1....0....1....2....2....0....0....1....1....2....1....1....0....1
..0....1....0....1....0....2....1....1....2....1....2....1....2....0....1....0
CROSSREFS
Column 2 of A249707.
Sequence in context: A165461 A020166 A046448 * A039467 A250657 A243577
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 04 2014
STATUS
approved