login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249298 Smallest positive integer k, such that s-k*n is a square where s is the smallest square >= k*n. 1
1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 5, 1, 5, 6, 1, 1, 9, 2, 9, 2, 1, 12, 13, 1, 1, 14, 1, 3, 17, 2, 19, 1, 3, 20, 1, 1, 23, 24, 3, 1, 25, 2, 27, 6, 1, 30, 31, 1, 1, 2, 3, 7, 35, 4, 1, 2, 3, 40, 41, 1, 41, 42, 1, 1, 1, 4, 47, 10, 5, 2, 51, 1, 51, 52, 3, 12, 1, 6, 57, 1, 1, 60, 61, 1, 3, 62, 7, 3, 65, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For any n>=3, there exists at least one positive integer k, 1 <= k <= n-1 such that the difference between the smallest square >= k*n and k*n is a square. To prove this, consider the multiplier k = n-2. Then (n-2)*n = (n-1)^2-1, thus the difference from the next square is 1, which is a square. If n = 1, k = 1 and if n = 2, k = 2.

Smallest positive integer k such that ceiling(sqrt(k*n))^2-k*n is a square.

LINKS

Table of n, a(n) for n=1..90.

EXAMPLE

a(10) = 4, for ceiling(sqrt(10))^2-10 = 6, ceiling(sqrt(2*10))^2-2*10 = 5, ceiling(sqrt(3*10))^2-3*10 = 6 and ceiling(sqrt(4*10))^2-4*10 = 9 = 3^2.

MATHEMATICA

dif[n_] := Ceiling[Sqrt[n]]^2 - n; a[k_] := Module[{n = 1}, While[dif[dif[n*k]] != 0, n++]; Return[n]]; Table[a[k], {k, 1, 90}]

PROG

(PARI) a(n) = {k=1; while(!issquare(ceil(sqrt(k*n))^2-k*n), k++); k; } \\ Michel Marcus, Oct 24 2014

CROSSREFS

Cf. A000290, A145236 (equals a(A000040)), A068527 (difference for k=1).

Cf. A145016, A145022, A145023, A145047, A145048, A145049, A145050, A145215.

Sequence in context: A319193 A097886 A308293 * A088863 A053283 A035669

Adjacent sequences:  A249295 A249296 A249297 * A249299 A249300 A249301

KEYWORD

nonn

AUTHOR

Valtteri Raiko, Oct 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 16:00 EDT 2021. Contains 343652 sequences. (Running on oeis4.)