login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035669
Number of partitions of n into parts 7k+4 and 7k+5 with at least one part of each type.
3
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 1, 1, 1, 2, 3, 1, 4, 3, 3, 3, 5, 7, 4, 7, 7, 8, 8, 10, 13, 10, 14, 15, 16, 17, 20, 25, 21, 26, 29, 32, 33, 37, 45, 41, 47, 54, 58, 61, 65, 79, 76, 83, 94, 103, 108, 113, 132, 135, 143, 160, 172, 185, 192, 219, 227, 240, 265, 286
OFFSET
1,16
LINKS
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(7*k + 4)))*(-1 + 1/Product_{k>=0} (1 - x^(7*k + 5))). - Robert Price, Aug 15 2020
MATHEMATICA
nmax = 74; s1 = Range[0, nmax/7]*7 + 4; s2 = Range[0, nmax/7]*7 + 5;
Table[Count[IntegerPartitions[n, All, s1~Join~s2], x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 15 2020 *)
nmax = 74; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k + 4)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 5)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 15 2020 *)
KEYWORD
nonn
STATUS
approved