login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035666
Number of partitions of n into parts 7k+3 and 7k+4 with at least one part of each type.
3
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 3, 1, 1, 3, 3, 2, 3, 6, 4, 4, 7, 8, 6, 8, 13, 10, 10, 16, 17, 14, 19, 25, 22, 23, 32, 34, 31, 38, 48, 45, 47, 60, 65, 62, 73, 86, 86, 90, 109, 117, 117, 133, 153, 155, 165, 191, 205, 209, 235, 261, 272, 288, 326, 349, 362, 398, 440, 459
OFFSET
1,14
LINKS
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(7*k + 3)))*(-1 + 1/Product_{k>=0} (1 - x^(7*k + 4))). - Robert Price, Aug 15 2020
MATHEMATICA
nmax = 71; s1 = Range[0, nmax/7]*7 + 3; s2 = Range[0, nmax/7]*7 + 4;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 15 2020 *)
nmax = 71; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(7 k + 3)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(7 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 15 2020*)
KEYWORD
nonn
STATUS
approved