login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145016
Primes p of the form 4k+1 for which p - floor(sqrt(p))^2 is a square.
19
5, 13, 17, 29, 37, 53, 73, 97, 101, 109, 137, 173, 197, 229, 241, 257, 281, 293, 349, 397, 401, 409, 457, 509, 577, 601, 641, 661, 677, 701, 733, 809, 857, 877, 977, 997, 1033, 1049, 1093, 1153, 1181, 1229, 1289, 1297, 1321, 1373, 1433, 1453, 1493, 1601, 1609
OFFSET
1,1
COMMENTS
If a(n) = x^2 + y^2 then y = floor(sqrt(a(n))) and by a well known Euler theorem, the representation is unique.
Odd primes p = x^2 + y^2 such that y > x^2/2. - Thomas Ordowski, Aug 16 2014
LINKS
MAPLE
filter:= p -> isprime(p) and issqr(p - floor(sqrt(p))^2):
select(filter, [seq(p, p=1..10000, 4)]); # Robert Israel, Dec 04 2018
MATHEMATICA
okQ[n_]:=PrimeQ[n]&&IntegerQ[Sqrt[n-Floor[Sqrt[n]]^2]]; Select[4Range[500]+1, okQ] (* Harvey P. Dale, Mar 23 2011 *)
PROG
(PARI) isok(p) = isprime(p) && ((p%4) == 1) && issquare(p - sqrtint(p)^2); \\ Michel Marcus, Dec 04 2018
CROSSREFS
Subsequence of A002144 (Pythagorean primes).
Sequence in context: A111055 A307096 A283391 * A372078 A354155 A123079
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Sep 29 2008
STATUS
approved