OFFSET
1,1
COMMENTS
Primes p = x^2 + y^2 such that q = x^2 - y^2 + 2*x*y is prime, where x > y > 0.
Primes q are 7, 17, 23, 41, 47, 73, 71, 103, 137, 151, 127, 193, 191, ...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Select[Prime@ Range@ 200, Length@ Select[PowersRepresentations[#^2, 2, 2], PrimeQ@ Total@ # &] > 1 &] (* Michael De Vlieger, Mar 07 2017 *)
PROG
(PARI) T=thueinit('x^2+1, 1);
is(n)=if(n%4 != 1 || !isprime(n), return(0)); my(v=thue(T, n^2)); for(i=1, #v, if(v[i][1]>0 && v[i][2]>=v[i][1] && isprime(vecsum(v[i])), return(1))); 0 \\ Charles R Greathouse IV, Mar 07 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Mar 07 2017
EXTENSIONS
More terms from Altug Alkan, Mar 07 2017
STATUS
approved