The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145022 Primes p of the form 4k+1 for which s=2 is the least positive integer such that sp-(floor(sqrt(sp)))^2 is a square. 14
 41, 61, 89, 113, 149, 157, 181, 193, 233, 269, 277, 313, 317, 337, 389, 421, 433, 557, 569, 613, 617, 709, 761, 773, 853, 881, 929, 937, 1013, 1109, 1117, 1129, 1201, 1213, 1301, 1409, 1429, 1553, 1637, 1741, 1753, 1861, 1873, 1901, 1997, 2113, 2137, 2153 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE a(1)=41 since p=41 is the least prime of the form 4k+1 for which p-(floor(sqrt(p)))^2 is not a square, but 2p-(floor(sqrt(2p)))^2 is a square (for p=41 it is 1). MAPLE filter:= proc(p)   if not isprime(p) then return false fi;   if issqr(p-floor(sqrt(p))^2) then return false fi;   issqr(2*p-floor(sqrt(2*p))^2) end proc: select(filter, [seq(p, p=1..10000, 4)]); # Robert Israel, Dec 04 2018 MATHEMATICA sQ[n_] := IntegerQ[Sqrt[n - (Floor[Sqrt[n]])^2]]; aQ[n_] := Mod[n, 4] == 1 && PrimeQ[n] && !sQ[n] && sQ[2n]; Select[Range, aQ] (* Amiram Eldar, Dec 04 2018 *) CROSSREFS Cf. A145016. Sequence in context: A178057 A169798 A110411 * A154763 A141881 A139952 Adjacent sequences:  A145019 A145020 A145021 * A145023 A145024 A145025 KEYWORD nonn AUTHOR Vladimir Shevelev, Sep 29 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 00:22 EDT 2021. Contains 343609 sequences. (Running on oeis4.)