login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249271
Decimal expansion of the mean value over all positive integers of a function giving the least quadratic nonresidue modulo a given odd integer (this function is precisely defined in A053761).
0
3, 1, 4, 7, 7, 5, 5, 1, 4, 8, 5, 0, 2, 4, 0, 0, 3, 1, 2, 5, 1, 6, 6, 7, 4, 9, 5, 5, 8, 7, 9, 7, 6, 9, 2, 0, 9, 2, 7, 2, 9, 3, 7, 7, 4, 8, 7, 9, 3, 3, 9, 8, 8, 6, 4, 0, 5, 9, 6, 4, 7, 0, 2, 0, 6, 6, 4, 7, 8, 1, 1, 8, 0, 0, 9, 1, 6, 7, 2, 4, 6, 7, 7, 9, 9, 7, 9, 4, 5, 2, 0, 9, 4, 8, 8, 2, 8, 7, 9, 7, 8, 6, 9, 1
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge Univ. Press, 2003, Meissel-Mertens constants: Quadratic residues, pp. 96—98.
LINKS
Robert Baillie and Samuel S. Wagstaff, Lucas pseudoprimes, Mathematics of Computation 35 (1980), pp. 1391-1417.
FORMULA
1 + sum_{j=2..m} (p_j + 1)*2^(-j+1)*prod_{i=1..j-1} (1 - 1/p_i), where p_j is the j-th prime number.
EXAMPLE
3.147755148502400312516674955879769209272937748793398864...
MATHEMATICA
digits = 104; Clear[s]; s[m_] := s[m] = 1 + Sum[(Prime[j] + 1)*2^(-j + 1)* Product[1 - 1/Prime[i], {i, 1, j - 1}] // N[#, digits + 100]&, {j, 2, m}] ; s[10]; s[m = 20]; While[RealDigits[s[m]] != RealDigits[s[m/2]], Print[m]; m = 2*m]; RealDigits[s[m], 10, digits] // First
PROG
(PARI) do(lim)=my(p=2, pr=1., s=1); forprime(q=3, lim, pr*=(1-1/p)/2; s+=(q+1)*pr; p=q); s \\ Charles R Greathouse IV, Dec 20 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved