login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249269
Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} x^k = Sum_{k=0..n} A_k*(x-3*(-1)^k)^k.
0
1, -2, 1, -29, 7, 1, 268, -74, -8, 1, 4885, -1262, -170, 13, 1, -82838, 21823, 2800, -257, -14, 1, -2097065, 548161, 72055, -6197, -419, 19, 1, 51727192, -13551428, -1770128, 155398, 9976, -548, -20, 1, 1696812649, -444145484, -58168484, 5067886, 333166, -17180, -776, 25, 1
OFFSET
0,2
COMMENTS
Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x-3)^0 + A_1*(x+3)^1 + A_2*(x-3)^2 + A_3*(x+3)^3 + ... + A_n*(x-3*(-1)^n)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
EXAMPLE
Triangle starts:
1;
-2, 1;
-29, 7, 1;
268, -74, -8, 1;
4885, -1262, -170, 13, 1;
-82838, 21823, 2800, -257, -14, 1;
-2097065, 548161, 72055, -6197, -419, 19, 1;
51727192, -13551428, -1770128, 155398, 9976, -548, -20, 1;
1696812649, -444145484, -58168484, 5067886, 333166, -17180, -776, 25, 1;
...
PROG
(PARI) a(n, j, L)=if(j==n, return(1)); if(j!=n, return(1-sum(i=1, n-j, (-L)^i*(-1)^(i*j)*binomial(i+j, i)*a(n, i+j, L))))
for(n=0, 10, for(j=0, n, print1(a(n, j, -3), ", ")))
CROSSREFS
Sequence in context: A015155 A009822 A246909 * A245621 A349037 A351710
KEYWORD
sign,tabl
AUTHOR
Derek Orr, Oct 23 2014
STATUS
approved