The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249267 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} x^k = Sum_{k=0..n} A_k*(x-2*(-1)^k)^k. 0
 1, -1, 1, -13, 5, 1, 75, -31, -5, 1, 987, -383, -77, 9, 1, -10565, 4177, 803, -111, -9, 1, -187397, 73489, 14483, -1871, -189, 13, 1, 2962811, -1164335, -228109, 30049, 2891, -239, -13, 1, 67151483, -26365999, -5179405, 676961, 66731, -5167, -349, 17, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x-2)^0 + A_1*(x+2)^1 + A_2*(x-2)^2 + A_3*(x+2)^3 + ... + A_n*(x-2*(-1)^n)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0. LINKS FORMULA T(n,n-1) = 1+2*n*(-1)^n, for n > 0. EXAMPLE 1; -1,               1; -13,              5,        1; 75,             -31,       -5,      1; 987,           -383,      -77,      9,     1; -10565,        4177,      803,   -111,    -9,     1; -187397,      73489,    14483,  -1871,  -189,    13,    1; 2962811,   -1164335,  -228109,  30049,  2891,  -239,  -13,  1; 67151483, -26365999, -5179405, 676961, 66731, -5167, -349, 17, 1; PROG (PARI) a(n, j, L)=if(j==n, return(1)); if(j!=n, return(1-sum(i=1, n-j, (-L)^i*(-1)^(i*j)*binomial(i+j, i)*a(n, i+j, L)))) for(n=0, 10, for(j=0, n, print1(a(n, j, -2), ", "))) CROSSREFS Cf. A248976. Sequence in context: A226376 A222165 A277125 * A123172 A010218 A107833 Adjacent sequences:  A249264 A249265 A249266 * A249268 A249269 A249270 KEYWORD sign,tabl AUTHOR Derek Orr, Oct 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 15:33 EDT 2020. Contains 334684 sequences. (Running on oeis4.)