login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249272
Decimal expansion of a constant associated with fundamental discriminants and Dirichlet characters.
0
4, 9, 8, 0, 9, 4, 7, 3, 3, 9, 6, 1, 4, 9, 3, 4, 1, 5, 0, 7, 9, 1, 3, 2, 5, 3, 2, 5, 8, 8, 0, 7, 7, 5, 2, 8, 1, 2, 3, 7, 7, 3, 2, 6, 9, 6, 5, 8, 5, 2, 0, 4, 7, 9, 5, 4, 6, 2, 3, 3, 1, 2, 7, 1, 8, 6, 7, 3, 3, 2, 6, 3, 8, 1, 9, 6, 8, 0, 0, 3, 8, 1, 5, 2, 0, 9, 0, 4, 7, 7, 4, 9, 0, 0, 6, 1, 7, 6, 1, 6, 2, 1, 2
OFFSET
1,1
LINKS
Peter J. Cho, Henry H. Kim, The average of the smallest prime in a conjugacy class, arXiv:1601.03012 [math.NT], 2016.
Steven R. Finch, Average least nonresidues, December 4, 2013. [Cached copy, with permission of the author]
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 250.
FORMULA
sum_{q} q^2/(2(q+1)) prod_{p<q} (p+2)/(2(p+1)), where p, q are primes.
EXAMPLE
4.9809473396149341507913253258807752812377326965852...
MATHEMATICA
digits = 103; Clear[s, P]; P[j_] := P[j] = Product[(Prime[k] + 2)/(2*(Prime[k] + 1)), {k, 1, j - 1}] // N[#, digits + 100]&; s[m_] := s[m] = Sum[Prime[j]^2/(2*(Prime[j] + 1))*P[j], {j, 1, m}]; s[10]; s[m = 20]; While[RealDigits[s[m]] != RealDigits[s[m/2]], Print[m, " ", N[s[m]]]; m = 2*m]; RealDigits[s[m], 10, digits] // First
PROG
(PARI) suminf(k=1, prime(k)^2/(2*(prime(k)+1))*prod(i=1, k-1, (prime(i)+2)/(2*(prime(i)+1)))); \\ Michel Marcus, Apr 15 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved