login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249137
Decimal expansion of the derivative y'(0) where y(x) is the solution to the differential equation y''(x)+exp(y(x))=0, with y(0)=y(beta)=0 and beta maximum (beta = A249136).
1
2, 1, 3, 3, 8, 7, 7, 9, 3, 9, 9, 1, 5, 0, 6, 1, 1, 1, 9, 8, 0, 7, 2, 4, 4, 6, 7, 7, 4, 0, 1, 8, 5, 2, 9, 1, 9, 2, 2, 8, 9, 6, 2, 3, 8, 5, 3, 7, 9, 6, 4, 6, 8, 6, 1, 7, 7, 7, 2, 3, 4, 5, 9, 2, 7, 1, 9, 0, 6, 1, 1, 7, 5, 5, 7, 7, 4, 9, 9, 0, 3, 8, 1, 5, 7, 5, 2, 3, 9, 9, 3, 3, 7, 4, 7, 3, 2, 9, 4, 3, 3, 5, 6
OFFSET
1,1
LINKS
Eric Weisstein's MathWorld, Laplace Limit.
FORMULA
y'(0) = sqrt(2)*sinh(sqrt(lambda^2 + 1)), where lambda is A033259, the Laplace limit constant 0.66274...
EXAMPLE
2.13387793991506111980724467740185291922896238537964686...
MATHEMATICA
digits = 103; lambda = x /. FindRoot[x*Exp[Sqrt[1 + x^2]]/(1 + Sqrt[1 + x^2]) == 1, {x, 1}, WorkingPrecision -> digits+5]; mu = Sqrt[lambda^2 + 1]; RealDigits[Sqrt[2]*Sinh[mu], 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved