login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246174
Triangle read by rows: T(n,k) is the number of vertex pairs at distance k of the Lucas cube Lambda(n) (1<=k<=n).
1
2, 1, 3, 3, 8, 8, 4, 1, 15, 20, 15, 5, 30, 48, 44, 24, 6, 1, 56, 105, 119, 84, 35, 7, 104, 224, 296, 256, 144, 48, 8, 1, 189, 459, 696, 711, 495, 228, 63, 9, 340, 920, 1570, 1840, 1522, 880, 340, 80, 10, 1, 605, 1804, 3421, 4521, 4312, 2981, 1463, 484, 99, 11
OFFSET
2,1
COMMENTS
The Lucas cube Lambda(n) can be defined as the graph whose vertices are the binary strings of length n without either two consecutive 1's or a 1 in the first and in the last position, and in which two vertices are adjacent when their Hamming distance is exactly 1.
The number of entries in row n is equal to n if n is even and equal to n-1 if n is odd.
The entries in row n are the coefficients of the Hosoya polynomial of the Lucas cube Lambda(n).
T(n,1) = A099920(n-1) = number of edges in Lambda(n).
Sum(kT(n,k), k>=1) = A238420(n) = the Wiener index of Lambda(n).
LINKS
S. Klavzar, M. Mollard, Wiener index and Hosoya polynomial of Fibonacci and Lucas cubes, MATCH Commun. Math. Comput. Chem., 68, 2012, 311-324.
E. Munarini, C. P. Cippo, N. Z. Salvi, On the Lucas cubes, The Fibonacci Quarterly, 39, No. 1, 2001, 12-21.
FORMULA
G.f.: tz^2(2+t-z+tz-3tz^2+tz^3+tz^4)/((1+tz)(1-z-tz-z^2-tz^2+tz^3)(1-z-z^2)). Derived from Theorem 4.3 of the Klavzar-Mollard reference in which the g.f. of the ordered Hosoya polynomials is given.
EXAMPLE
Row 2 is 2,1. Indeed, Lambda(2) is the path-tree P(3) having vertex-pair distances 1,1, and 2.
Triangle starts:
2,1;
3,3;
8,8,4,1;
15,20,15,5;
30,48,44,24,6,1;
MAPLE
g := t*z^2*(2+t-z+t*z-3*t*z^2+t*z^3+t*z^4)/((1+t*z)*(1-z-t*z-z^2-t*z^2+t*z^3)*(1-z-z^2)): gserz := simplify(series(g, z = 0, 20)): for j from 2 to 18 do H[j] := sort(coeff(gserz, z, j)) end do: for j from 2 to 13 do seq(coeff(H[j], t, k), k = 1 .. 2*floor((1/2)*j)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf,changed
AUTHOR
Emeric Deutsch, Aug 18 2014
STATUS
approved