login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246175
The hyper-Wiener index of the Fibonacci cube Gamma(n) (n>=1).
1
1, 5, 23, 89, 325, 1123, 3750, 12174, 38682, 120750, 371478, 1128810, 3394159, 10112987, 29892425, 87737471, 255912115, 742272853, 2142128604, 6153811500, 17605105380, 50174676300, 142501128540, 403422149220, 1138714934125, 3205372562369, 8999834877995, 25209180070037
OFFSET
1,2
COMMENTS
The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1.
LINKS
G. G. Cash, Relationship between the Hosoya polynomial and the hyper-Wiener index, Appl. Math. Letters, 15, 2002, 893-895.
S. Klavzar, M. Mollard, Wiener index and Hosoya polynomial of Fibonacci and Lucas cubes, MATCH Commun. Math. Comput. Chem., 68, 2012, 311-324.
FORMULA
G.f.: z*(1-z-z^2)/((1+z)^3*(1-3*z+z^2)^3).
625*a(n) = -1/2*(-1)^n*(74+45*n+5*n^2) -5*(2*A001871(n)-3*A001871(n-1)) +17*A001906(n)-53*A001906(n+1) +50*(2*A246178(n)-3*A246178(n-1)). - R. J. Mathar, Jul 22 2022
MAPLE
G := z*(1-z-z^2)/((1+z)^3*(1-3*z+z^2)^3): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, j), j = 1 .. 35);
MATHEMATICA
CoefficientList[Series[z (1-z-z^2)/((1+z)^3(1-3z+z^2)^3), {z, 0, 30}], z] (* Harvey P. Dale, Mar 05 2019 *)
CROSSREFS
Sequence in context: A034447 A255803 A121329 * A362764 A283224 A178834
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 18 2014
STATUS
approved