login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249127
a(n) = n * floor(3*n/2).
2
0, 1, 6, 12, 24, 35, 54, 70, 96, 117, 150, 176, 216, 247, 294, 330, 384, 425, 486, 532, 600, 651, 726, 782, 864, 925, 1014, 1080, 1176, 1247, 1350, 1426, 1536, 1617, 1734, 1820, 1944, 2035, 2166, 2262, 2400, 2501, 2646, 2752, 2904, 3015, 3174, 3290, 3456, 3577, 3750, 3876, 4056, 4187, 4374, 4510
OFFSET
0,3
COMMENTS
Union of A033570, that is (2*n+1)*(3*n+1), and A033581, that is 6*n^2.
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number
Wikipedia, Platonic Solid
Wolfram MathWorld, Platonic Solid
FORMULA
a(n) = n * floor(3n/2) = n * A032766(n).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Colin Barker, Oct 22 2014
G.f.: -x*(2*x^3+4*x^2+5*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Oct 22 2014
a(n) = 3/2 * n^2 + ((-1)^n-1) * n/4. E.g.f.: ((3/2)*x^2+(5/4)*x)*exp(x)-(x/4)*exp(-x). - Robert Israel, Oct 26 2014
EXAMPLE
For n=5, a(n) = 5*floor(15/2) = 5*7 = 35.
MAPLE
seq(n*floor(3*n/2), n=0..100); # Robert Israel, Oct 26 2014
MATHEMATICA
Table[n Floor[3 n/2], {n, 0, 100}] (* Vincenzo Librandi, Oct 22 2014 *)
PROG
(Python)
from math import *
{print(int(n*floor(3*n/2)), end=', ') for n in range(101)}
(PARI) a(n)=3*n\2*n \\ Charles R Greathouse IV, Oct 21 2014
(Magma) [n*Floor(3*n/2): n in [0..60]]; // Vincenzo Librandi, Oct 22 2014
(PARI) concat(0, Vec(-x*(2*x^3+4*x^2+5*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, Oct 22 2014
CROSSREFS
Cf. A032766, A033581 (6*n^2), A033570 (2*n+1)*(3*n+1), A001318 (n*(3*n-1)/2).
Sequence in context: A227416 A106697 A323002 * A277336 A140522 A065218
KEYWORD
nonn,easy
AUTHOR
Karl V. Keller, Jr., Oct 21 2014
STATUS
approved