This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249128 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments. 3
 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 6, 11, 7, 8, 1, 1, 6, 18, 26, 10, 11, 1, 1, 24, 50, 46, 58, 14, 15, 1, 1, 24, 96, 154, 86, 102, 18, 19, 1, 1, 120, 274, 326, 444, 156, 177, 23, 24, 1, 1, 120, 600, 1044, 756, 954, 246, 272, 28, 29, 1, 1, 720, 1764 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + floor(n/2))/f(n-1,x), where f(x,0) = 1.  (Sum of numbers in row n) = A056953(n) for n >= 0. Column 1 consists of repeated factorials (A000142), as in A081123. LINKS Clark Kimberling, Rows 0..100, flattened EXAMPLE f(0,x) = 1/1, so that p(0,x) = 1 f(1,x) = (1 + x)/1, so that p(1,x) = 1 + x; f(2,x) = (1 + x + x^2)/(1 + x), so that p(2,x) = 1 + x + x^2). First 6 rows of the triangle of coefficients: 1 1    1 1    1    1 2    3    1    1 2    4    5    1    1 6    11   7    8    1   1 MATHEMATICA z = 15; p[x_, n_] := x + Floor[n/2]/p[x, n - 1]; p[x_, 1] = 1; t = Table[Factor[p[x, n]], {n, 1, z}] u = Numerator[t] TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249128 array *) Flatten[CoefficientList[u, x]] (* A249128 sequence *) CROSSREFS Cf. A056953, A000142, A081123, A249130. Sequence in context: A114732 A123338 A152735 * A304738 A046226 A054722 Adjacent sequences:  A249125 A249126 A249127 * A249129 A249130 A249131 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Oct 22 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 03:27 EST 2018. Contains 318052 sequences. (Running on oeis4.)