login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248754
Palindromes p=A002113(n) whose index n is also a palindrome and in addition a substring of p (strings in base 10).
1
11, 1111, 12221, 23332, 34443, 45554, 56665, 67776, 78887, 89998, 111111, 1222221, 2333332, 3444443, 4555554, 5666665, 6777776, 7888887, 8999998, 9101019, 11111111, 102020201, 112121211, 122222221, 132323231, 142424241, 152525251, 162626261, 172727271, 182828281
OFFSET
1,1
COMMENTS
This is a proper subsequence of A248753 (where the index does not need to be palindromic).
EXAMPLE
11 is a term because the eleventh palindrome is 11.
1111 is a member because it is the 111th palindrome.
12221 is in the sequence because the 222nd palindrome is 12221.
MATHEMATICA
(* first load 'nthPalindrome' from A002113 and then *) nPal[n_] := nthPalindrome[n - 1]; fQ[n_] := StringPosition[ ToString[ nPal[ nPal[ k]]], ToString[ nPal[ n]]] != {}; k = 2; lst = {}; While[k < 501, If[ fQ[k], AppendTo[lst, nPal[ nPal[ k]] ]]; k++]; lst
PROG
(Python)
from itertools import count, islice
def A248754_gen(): # generator of terms
def f(n):
y = 10*(x:=10**(len(str(n>>1))-1))
return (c:=n-x)*x+int(str(c)[-2::-1] or 0) if n<x+y else (c:=n-y)*y+int(str(c)[::-1] or 0)
for n in count(2):
if str(m:=f(n)) in str(k:=f(m)):
yield k
A248754_list = list(islice(A248754_gen(), 30)) # Chai Wah Wu, Jul 24 2024
CROSSREFS
Sequence in context: A289934 A289968 A248753 * A099814 A340549 A260077
KEYWORD
nonn,base,easy
AUTHOR
Robert G. Wilson v, Oct 13 2014
STATUS
approved