login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248753
Palindromes p = A002113(n) whose index n is a substring of p.
1
11, 1111, 12221, 23332, 34443, 45554, 56665, 67776, 78887, 89998, 101101, 111111, 121121, 131131, 141141, 151151, 161161, 171171, 181181, 191191, 1020201, 1121211, 1222221, 1323231, 1424241, 1525251, 1626261, 1727271, 1828281, 1929291, 2030302, 2131312
OFFSET
1,1
COMMENTS
That is to say the 'n' of A002113(n) is a substring of A002113(n).
EXAMPLE
11 is a term because the eleventh palindrome is 11.
12221 is in the sequence because the 222nd palindrome is 12221.
101101 is a member because it is the 1101st palindrome.
MATHEMATICA
(* first load 'nthPalindrome' from A002113 and then *) nPal[n_] := nthPalindrome[n - 1]; fQ[n_] := StringPosition[ ToString[ nPal[ n]], ToString[ n]] != {}; k = 1; lst = {}; While[k < 3001, If[fQ[k], AppendTo[lst, nPal[ k]]]; k++]; lst
PROG
(Python)
from itertools import count, islice
def A248753_gen(startvalue=2): # generator of terms >= startvalue
def f(n):
y = 10*(x:=10**(len(str(n>>1))-1))
return (c:=n-x)*x+int(str(c)[-2::-1] or 0) if n<x+y else (c:=n-y)*y+int(str(c)[::-1] or 0)
for n in count(max(2, startvalue)):
if str(n) in str(k:=f(n)):
yield k
A248753_list = list(islice(A248753_gen(), 32)) # Chai Wah Wu, Jul 24 2024
CROSSREFS
Sequence in context: A290067 A289934 A289968 * A248754 A099814 A340549
KEYWORD
nonn,base,easy
AUTHOR
Robert G. Wilson v, Oct 13 2014
STATUS
approved