The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248216 a(n) = 6^n - 2^n. 3
 0, 4, 32, 208, 1280, 7744, 46592, 279808, 1679360, 10077184, 60465152, 362795008, 2176778240, 13060685824, 78364147712, 470184951808, 2821109841920, 16926659313664, 101559956406272, 609359739486208, 3656158439014400, 21936950638280704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (8,-12). FORMULA G.f.: 4*x/((1-2*x)*(1-6*x)). a(n) = 8*a(n-1) - 12*a(n-2). a(n) = 2^n*(3^n - 1) = A000079(n) * A024023(n). E.g.f.: exp(6*x) - exp(2*x) = 2*exp(4*x)*sinh(2*x). - G. C. Greubel, Feb 09 2021 MATHEMATICA Table[6^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[4x/((1-2x)(1-6x)), {x, 0, 30}], x] LinearRecurrence[{8, -12}, {0, 4}, 30] (* Harvey P. Dale, Dec 21 2019 *) PROG (MAGMA) [6^n-2^n: n in [0..25]]; (Sage) [2^n*(3^n -1) for n in (0..25)] # G. C. Greubel, Feb 09 2021 CROSSREFS Sequences of the form k^n - 2^n: A001047 (k=3), A020522 (k=4), A005057 (k=5), this sequence (k=6), A190540 (k=7), A248217 (k=8), A191465 (k=9), A060458 (k=10), A139740 (k=11). Cf. A000079, A024023. Sequence in context: A271161 A002012 A240408 * A133642 A098981 A120917 Adjacent sequences:  A248213 A248214 A248215 * A248217 A248218 A248219 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Oct 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 15:01 EDT 2021. Contains 345140 sequences. (Running on oeis4.)