login
A002012
Almost trivalent maps.
(Formerly M3643 N1481)
0
4, 32, 200, 1120, 5880, 29568, 144144, 686400, 3208920, 14780480, 67251184, 302865472, 1352078000, 5990745600, 26369978400, 115407434880, 502503206040, 2178032472000, 9401840170800, 40434981787200, 173319035569680, 740642835229440, 3156148445580000
OFFSET
0,1
REFERENCES
R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. M. Mathai and P. N. Rathie, Enumeration of almost cubic maps, Journal of Combinatorial Theory, Series B, Vol 13 (1972), 83-90.
FORMULA
a(n) = 2*(n+3)*(2*(n+1))! / (3*n!*(n+1)!). [Mathai & Rathie, Eq. (22)] - Andrey Zabolotskiy, Jun 24 2024
KEYWORD
nonn
EXTENSIONS
Terms a(7) and beyond from Andrey Zabolotskiy, Jun 24 2024
STATUS
approved